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Administrative

 EXxercise handouts: 11:59 PM on Monday

e Office hours later from 2pm to 3pm



Some Updates: run.usc.edu/vega

Another awesome free library with half-edge data-structure
By Prof. Jerne] Barbic

MAIN DOWNLOAD/FAQ SCREENSHOTS ABOUT

USC
VEGA FEM LIBRARY Viterbi

School of Engineering

NEW: vega FEM 2.0 released on Oct 8, 2013. New features described below.

Vega is a computationally efficient and stable C/C++ physics library for three-dimensional
deformable object simulation. It is designed to model large deformations, including geometric
and material nonlinearities, and can also efficiently simulate linear systems. Vega is open-
source and free. It is released under the 3-clause BSD license, which means that it can be
used freely both in academic research and in commercial applications.

Vega implements several widely used methods for simulation of large deformations of 3D
solid deformable objects:

JURIJ VEGA (‘1754-‘1802) e co-rotational linear FEM elasticity [MG04]; it can also compute the exact tangent

— stiffness matrix [Bar12] (similar to [CPSS10]),
I i ¢ linear FEM elasticity [Sha90], ,
,f e A\ ¢ invertible isotropic nonlinear FEM models [ITF04, TSIF0S5],



http://run.usc.edu/vega

FYI

MeshLab

Popular Mesh Processing Software (meshlab.sourceforge.net)



http://meshlab.sourceforge.net

FYI

BeNTO3D

Mesh Processing Framework for Mac (www.bento3d.com)



http://www.bento3d.com

Last Time

Discrete Representations

e Explicit (parametric, polygonal meshes)

* |mplicit Surfaces (SDF, grid representation)
 Conversions

* E—l: Closest Point, SDF, Fast Marching

* |—=E: Marching Cubes Algorithm

Geometry

Topology



Differential Geometry

Why do we care?
 Geometry of surfaces

* Mothertongue of physical theories

 Computation: processing / simulation




Motivation

We need differential geometry to compute

e gsurface curvature

* paramaterization distortion

* deformation energies



Applications: 3D Reconstruction
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Motivation

Geometry is the key

e studied for centuries (Cartan, Poincaré, Lie,
Hodge, de Rham, Gauss, Noether...)

* mostly differential geometry

* differential and integral calculus

* |nvariants and symmetries

Bobenku and Suris
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Getting Started

How to apply DiffGeo ideas?
* surfaces as a collection of samples
e and topology (connectivity)
* apply continuous ideas
 BUT: setting Is discrete
* what is the right way?

 discrete vs. discretized

Let’s look at that first
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Getting Started

What characterizes structure(s)?
* What is shape? ﬁ
* Euclidean Invariance

 What is physics?

e (Conservation/Balance Laws

e \What can we measure?

e area, curvature, mass, flux, circulation

Aot
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Getting Started

Invariant descriptors

e Quantities invariant under a set of transformations

Intrinsic descriptor

* quantities which do not depend on a coordinate frame
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Outline

« Parametric Curves

e Parametric Surfaces

Formalism & Intuition
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Differential Geometry

Leonard Euler (1707-1783) Carl Friedrich Gauss (1777-1855)
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Parametric Curves

x:[a,b] C IR — IR”

X(?)
b @W

X(a)

x(t) . da(t) /dt
(0 ) a(t) = S (dy@) /dt)
dz(t) /dt
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Recall: Mappings

X Y X Y X Y
GvaWGval Gy
N\ N\ N\ [
3 C 3 C 3 »-C
VARV AVINC S
Injective Surjective Bijective
NO SELF-INTERSECTIONS SELF-INTERSECTIONS

AMBIGUOUS PARAMETERIZATION

20



Parametric Curves

A parametric curve x(t)is

« simple: x(t) is injective (no self-intersections)
- differentiable: x¢(t) is defined for all t € |a, b]
* regular: x¢(t) #0 forall t € |a,b

X(D)
({ X(?)
(1)

X(a)
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Length of a Curve

Let ¢; = a + iAt and x; = x(¢;)
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Length of a Curve

Polyline chord length

AXZ'
S = 2 laxill = 2 |57 | A A xin —xil

) norm change

Curve arc length ( At — 0)

t
s = s(t) = / Ice||

length =

integration of infinitesimal change

x horm of speed
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Re-Parameterization

Mapping of parameter domain
u: la, bl — |c,d]
Re-parameterization w.r.t. u(t)
c,d = IR?, t— x(u(t))
Derivative (chain rule)

dx (u(t)) dx du

cTEE G rmeE B e ) LU

24



Example

Re-Parameterization

—1IR* , t— (4t,21)

> 10,1] , t— 2t

g:[0,1] - IR* |, t— (2t,1)
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Arc Length Parameterization

Mapping of parameter domain:
t
e s(t) = [l dt

Parameter s for x(s) equals length from x(a) to x(s)

x(s) = x(s(t)) ds = []x|| dt

same infinitesimal change

Special properties of resulting curve

Ixs(s)[| =1, =xs(s)-%xs5(s) =0

defines orthonormal frame
26



The Frenet Frame

Taylor expansion

1 1
X(t—l-h) — X(t) —+ Xt(t)h -+ ixtt(t) h2 -+ gxttt(t) hg + ...

for convergence analysis and approximations

Define local frame (t,n,b) (Frenet frame)

X¢ Xt X Xt

t — n = bxt b =
x|

[x¢ X X
tangent main normal binormal

adl



The Frenet Frame

Orthonormalization of local frame

X
tit b

Xt t

local affine frame Frenet frame

28



The Frenet Frame

Frenet-Serret: Derivatives w.r.t. arc length s

t, = K1
n, = —rt +7b
b, = —Tn

Curvature (deviation from straight line)

Kk = ”XSSH

Torsion (deviation from planarity)

1
B e ?det([Xs,Xszsss})

29



Curvature and Torsion

Planes defined by x and two vectors:
* osculating plane: vectors t and n
* normal plane: vectors n and b

e rectifying plane: vectors t and b

Osculating circle
e second order contact with curve
- center c =X+ (1/k)n

e radius 1/k

30



Curvature and Torsion

e Curvature: Deviation from straight line
e Torsion: Deviation from planarity

e |[ndependent of parameterization
e intrinsic properties of the curve

e Fuclidean invariants
e invariant under rigid motion

e Define curve uniquely up to a rigid motion

31



Curvature: Some Intuition

A line through two points on the curve (Secant)

P
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Curvature: Some Intuition

A line through two points on the curve (Secant)

P
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Curvature: Some Intuition

Tangent, the first approximation
limiting secant as the two points come together

P
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Curvature: Some Intuition

Circle of curvature
Consider the circle passing through 3 pints of the curve

P
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Curvature: Some Intuition

Circle of curvature
The limiting circle as three points come together

P
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Curvature: Some Intuition

Radius of curvature r
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Curvature: Some Intuition

Radius of curvature r

'
.

Curvature
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Curvature: Some Intuition

Signed curvature
Sense of traversal along curve
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Curvature: Some Intuition

GauB map n(x)

Point on curve maps to point on unit circle
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Curvature: Some Intuition

Shape operator (Weingarten map)
Change in normal as we slide along curve

negative directional derivative D of Gau3 map

O

describes directional curvature

using normals as degrees of freedom

— accuracy/convergence/implementation (discretization)

41



Curvature: Some Intuition

Turning number, k
Number of orbits in Gaussian image
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Curvature: Some Intuition

Turning number theorem

For a closed curve, the integral of curvature is an
integer multiple of 2m

rkds = 2k

€2

HBO®®
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Take Home Message

In the limit of a refinement sequence, discrete
measure of length and curvature agree with
continuous Mmeasures
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Outline

e Parametric Curves

« Parametric Surfaces
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Surfaces

What characterizes shape?
* shape does not depend on Euclidean motions
* metric and curvatures

e smooth continuous notions to discrete notions
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Metric on Surfaces

Measure Stuff
* angle, length, area
* requires an inner product
* we have:
* Euclidean inner product in domain
* we want to turn this into:

* inner product on surface
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Parametric Surfaces

Continuous surface

x(u,v)
x(u,v) = [ y(u,v)
z(u, v)
Normal vector
X, X X,
11 =
HXu X Xv”

Assume regular parameterization

Xu X Xy 7& 0 normal exists

48



Angles on Surface

Curve |u(t),v(t)] in uv-plane defines curve on the
surface x(u,v)

Two curves ci1 and c: intersecting at p
* angle of intersection?

* two tangents t1 and to
ti = aixy + GiXy
* compute inner product

t1t2 = cosf ||ty [t

49



Angles on Surface

Curve |u(t),v(t)] in uv-plane defines curve on the
surface x(u,v)

Two curves ci1 and cs intersecting at p
t{tZ — (alxu + 61X’U)T (aQXu + 52Xv)

T T T
Q] QaX,, Xy 1 (04152 + 04251) X, Xy T 51523% X

. Xix, XTX,U v9
iy (ala 61) XTXU X X, 62
U

50



First Funhdamental Form

First fundamental form
I _ E F\  (xlx, x.x,
- \F G) 7 \xlx, xIx,

Defines inner product on tangent space

(&) () = () e ()

5]



First Funhdamental Form

First fundamental form I allows to measure
(w.r.t. surface metric)

Angles tirtQ — <(C¥1,61), (a27ﬁ2)>

Length ds* = <(du, dv), (du, dv)> squared

infinitesimal

—  FEdu? 4+ 2Fdudv + Gdv? length

Area dA = ||xy X x| dudv
— T wle @ (yT4 )\~
infinitesimal i \/XU Xu * Xy Xy (Xu Xv) du dv
Area

- \/EG—deudv

cross product — determinant with unit vectors — area 52



Sphere Example

Spherical parameterization

COS U SIN V
x(u,v) = | sinusinv |, (u,v)€[0,27) x [0, 7)
COS U

Tangent vectors

— sIln u sSin v COS U COS V
X (U, v) = COS U Sin v Xy (U, v) = Sin u cos v
0 — SNV

First fundamental Form

53



Sphere Example

Length of equator x(t,7/2) IIIIIIIIII

2T 2T
/ l1ds = / \/E (u)” + 2Fuvp + G (v)” dt
0 0

27
/ sin v dt
0

= 27rsinv = 27

54



Sphere Example

Area of a sphere ||||||||III

ﬁﬁﬁﬁﬁ
IIIIII LLLLLL)
IIIIIII EEEEEEEER

T 27 T 27
/ / 1dA :/ / \/EG—FQdudv
o Jo o Jo
T 27
/ / sin v du dv
0

0
= 47
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Normal Curvature

Tangent vector t ...

t —cosgb

| Smgb

I
| uH

unit vector

| UH

56



Normal Curvature

.. defines intersection plane, yielding curve c(t)

normal curve

t —cosgb

| Smgb

I
| u” | UH

57



Geometry of the Normal

Gauss map

* normal at point

B SuXSy
S xSy

N(p) (p)

* consider curve in surface again
e study Its curvature at p

* normal “tilts” along curve

2779

58



Normal Curvature

Normal curvature %, (t) is defined as curvature of the
normal curve c(t) at point p(t) = x(u, v)

With second fundamental form
M — e f o X:‘Eun ngn
- \f g9/ x!I n x! n
normal curvature can be computed as
; tT 11t ea® + 2fab + gb? t

ax, + bx,

£ tT 1t Ea? + 2Fab + Gb? t = (a,b)

59



Surface Curvature(s)

Principal curvatures

e Maximum curvature kK1 — max Hn(Qb)

- ¢
e Minimum curvature k2 = 1IN ﬁ?n(Qb)
. Euler theorem kn(@) = Kicos> @ + Ko sin® ¢

* Corresponding principal directions €1 , €2 are orthogonal

60



Surface Curvature(s)

Principal curvatures

e Maximum curvature kK1 = mq?x lﬁln(Qb)

e Minimum curvature k2 = m(;n /fn(Qb)
. Euler theorem kn(@) = Kicos> @ + Ko sin® ¢

* Corresponding principal directions €1 , €2 are orthogonal

Special curvatures
K1 T K2 -
* Mean curvature  H = > extrinsic

e (Gaussian curvature K = K1 - Ko intrinsic (only first FF)

61



Invariants

Gaussian and mean curvature

* determinant and trace only

trdN, = x| +xp =H

* eigenvalues and orthovectors

dNy(e1) =K1e1  dNp(e2) = Kze

62



Mean Curvature

Integral representations

1= L [T @) d6 "
H. /) —
p/ 275/ kn(6)

A
Ky, = lim — G

A—0 A @ @

63



Curvature of Surfaces

K1 + K9

2
« H = 0 everywhere — minimal surface

Mean curvature H =

soap film

64



Curvature of Surfaces

K1+ Ko

2
« H = (0 everywhere — minimal surface

Mean curvature H —=

Green Void, Sydney
Architects: Lava
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Curvature of Surfaces

Gaussian curvature K = k1 - k9

« K = (0 everywhere — developable surface

surface that can be flattened to a plane without distortion (stretching or compression)

Disney, Concert Hall, L.A. Timber Fabric
Architects: Gehry Partners IBOIs ERPEL
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Shape Operator

Derivative of Gauss map

* second fundamental form
I1,(v) = (dNp(v),v)

e |ocal coordinates

m=—( (v s ) (

E F
F G

X

67



Intrinsic Geometry

Properties of the surface that only depend on the

first fundamental form
. length
* angles
* (Gaussian curvature (Theorema Egregium)

remarkable theorem (Gauss)

K — lim 6mr — 3C(r)

r—0 o

Gaussian curvature of a surface is invariant under local isometry

68



Classification

Point x on the surface is called
o elliptic, if K >0
« hyperbolic, if K <0
e parabolic,if K =10

e umbilic, if K1 = K9 or isotropic

Gaussian curvature K

69



Classification

Point x on the surface is called

k.=k,>0

Isotropic

Equal in all directions

spherical planar

Anisotropic
Distinct principal
directions
elliptic parabolic hyperbolic
K>0 K=0 K<0
developable

70



Gauss-Bonnet Theorem

For any closed manifold surface with Euler
characteristic X =2 —2g

/K:27TX

71



Sphere

Gauss-Bonnet Theorem

K1 =Ko = 1/r

K = Kkiky = 1/1°

1
/K:47T7°2-—2:47T
T

when sphere is deformed, new
positive and negative curvature cancel out

T2



Differential Operators

Gradient
V= ( of ﬁ)

or;’ Oz,

* points in the direction of the steepest ascend

/
g
—r— —
o R
-
K w
‘\“
- - .- e \
N { - - - .
- e W \ e -~ - - - —
- e\ N VL & e e - IS
- -— A - v — .
- - - N 3 - — - — -
- e - —d ‘ ® -
— -~ - - e
—_ - - - n,
. ~ .
. .
N .
\ .




Differential Operators

Divergence

OF; oF;,

divk =V . F = ..
v v 8$1 (%:'n

* volume density of outward flux of vector field
* magnitude of source or sink at given point

 Example: incompressible fluid
* velocity field is divergence-free
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Differential Operators

Divergence

oF,

OF;

8$1 . 8xn

divkF =V - F:

T B P

\

...... e
oo @)
' “‘ ....... H ” \ n
A B A - n NN e
- . on N '. T I g
P f/ '.., f Y =~ 4oy 4 Sty
o e w e (/(/ A e
b e - ‘ 4/ l/ 4/ .. - 5 4 V
P T N e
SR d
LR N S L
NN e s g W
. W e = e s O
DR ) [ R ’
SN N Yy o s e
S T A C
R e e N A n
1 ! A e . PR i - e
\ AN S N -~ - - md
\NAAAAS NN~ - )
SN AAAA S >
~— s~ A X NA A PN
- e - - v s 1 .\ d
P N h
R T G
U s
/ i/ ' 1 \ \ . h
v I ‘ .
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Laplace Operator

gradient 2nd partial
Laplace operator derivatives
operator /
\ / 82
Af =divVf = f

N N e

. . coordinates
function in divergence

Euclidean space operator

/6



Laplace-Beltrami Operator

Extension of Laplace fo functions on manifolds

Laplace- gradient
Beltrami operator

\ ...of the surface /

Asf =divs Vs f

/N

function on divergence
manifold S operator

Laplace on the surface

Tl



Laplace-Beltrami Operator

Laplace- gradient

ltrami rator
Beltra operato nean

\ / curvature

Agx =divg Vgx = —2Hn

SN

function on divergence normal
manifold & operator

/8
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Discrete Differential Geometry
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