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Shapes & Deformation

Why deformations?
e Sculpting, customization

e Character posing, animation

Criteria?

e |ntuitive behavior and interface

PRHHE

e semantics

* |nteractivity



Shapes & Deformation

 Manually modeled and scanned shape data

» Continuous and discrete shape representations




Goals

State of research in shape editing

Discuss practical considerations
 Flexibility
* Numerical issues

e Admissible interfaces

Comparison, tradeoffs
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Continuous/Analytical Surfaces

e [ensor product surfaces
(e.g. Bézier, B-Spline,
NURBS)

e Subdivision Surfaces

e Editability is inherent to the
representation




Spline Surfaces

Tensor product surfaces (“curves of curves™)
 Rectangular grid of control points

p(u,v) =)D p; N/ w)N;(v)

i=0 j=0




Spline Surfaces

Tensor product surfaces (“curves of curves™)
» Rectangular grid of control points

 Rectangular surface patch




Spline Surfaces

Tensor product surfaces (“curves of curves™)
» Rectangular grid of control points

 Rectangular surface patch

Problems:
 Many patches for complex models
 Smoothness across patch boundaries

e [rimming for non-rectangular patches



Subdivision Surfaces

Generalization of spline curves/surfaces
e Arbitrary control meshes

e Successive refinement (subdivision)

» Converges to smooth limit surface

» Connection between splines and meshes
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Spline & Subdivision Surfaces

Basis functions are smooth bumps

e Fixed support

* Fixed control grid s

Bound to control points
* |nitial patch layout is crucial

* Requires experts!

De-couple deformation from surface representation!
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Discrete Surfaces: Point Sets, Meshes

Flexible
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Suitable for highly
detalled scanned data

No analytic surface

No inherent “editability”
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Mesh Editing
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Outline

 Surface-Based Deformation

 Linear Methods
e Non-Linear Methods

» Spatial Deformation
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Mesh Deformation

Global deformation
with intuitive
detail preservation

S
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Mesh Deformation

Local & global
deformations




Linear Surface-Based Deformation

-

\_

e Shell-Based Deformation
 Multiresolution Deformation

o Differential Coordinates
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Modeling Metaphor

* Mesh deformation by displacement function d
— Interpolate prescribed constraints
— Smooth, intuitive deformation
= Physically-based principles

d:S - IR*

p — p+d(p)
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Shell Deformation Energy

=112
» Stretching /ka -1
— Change of local distances o
— Captured by 1st fundamental form 1= [ X§XZ X%XZ ]
* Bending g _
ki || I — I
— Change of local curvature
— Captured by 27 fundamental form ) T < n ’

» Stretching & bending is sufficient

— Differential geometry: “1st and 2nd fundamental forms
determine a surface up to rigid motion.”
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Physically-Based Deformation

* Nonlinear stretching & bending energies

/ ksﬂ\l — I’HQ} kbﬂ\ll — ]1’\@ dudv
(2

stretching bending

 Linearize terms — Quadratic energy

/ k{(HduHQ + Hdvrﬁ)J + k{(udwuz 42 |dy? + udeQ)Jdudv

stretching bending
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Physically-Based Deformation

* Minimize linearized bending energy

E(d) = /HduuH2‘|‘2HduvH2+||dvv“2dué-}1 — _min
S f(x)—>minj

o

 Variational calculus — Euler-Lagrange PDE

A%d = duyu + 2y + doy = 0 [ F@) =0 |

= “Best” deformation that satisfies constraints
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Initial state

o -

Ad = 0 A*d = 0
(Membrane) (Thin plate)
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PDE Discretization

» Euler-Lagrange PDE

23 S0
A?d =0 «

d=0 , ’

d = ¢h

» Laplace discretization

1
2A;

Ad; = Z (cot a;; + cot B;5)(d; — d;)

JEN;

A%d; = A(Ad;)




» Sparse linear system (19 nz/row)
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— Turn into symmetric positive definite system

» Solve this system each frame
— Use efficient linear solvers !!!

— Sparse Cholesky factorization

— See book for details
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Derivation Steps

{ Nonlinear Energy }

l Linearization

{ Quadratic Energy }

l Variational Calculus

{ Linear PDE J

l Discretization

{ Linear Equations J
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CAD-Like Deformation

[Botsch & Kobbelt, SIGGRAPH 04]
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Linear Surface-Based Deformation

-

\_

 Shell-Based Deformation
e Multiresolution Deformation

o Differential Coordinates
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Multiresolution Modeling

* Even pure translations induce local rotations!
= |Inherently non-linear coupling

 Alternative approach
— Linear deformation + multi-scale decomposition...

N\

Original Linear Nonlinear
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Multiresolution Editing

Frequency decomposition

Change low %

frequencies

Add high frequency details,
stored in local frames
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Multiresolution Editing

Multiresolution

Modeling
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Normal Displacements
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Limitations

* Neighboring displacements are not coupled

— Surface bending changes their angle
— Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear
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Limitations

* Neighboring displacements are not coupled

— Surface bending changes their angle
— Leads to volume changes or self-intersections

;
3

Original Normal Displ. Nonlinear
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Limitations

* Neighboring displacements are not coupled

— Surface bending changes their angle
— Leads to volume changes or self-intersections

* Multiresolution hierarchy difficult to compute
— Complex topology
— Complex geometry
— Might require more hierarchy levels
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Linear Surface-Based Deformation

-

\_

 Shell-Based Deformation
 Multiresolution Deformation

e Differential Coordinates
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Differential Coordinates

1. Manipulate differential coordinates instead of
spatial coordinates

— Gradients, Laplacians, local frames
— Intuition: Close connection to surface normal

2. Find mesh with desired differential coords

— Cannot be solved exactly
— Formulate as energy minimization
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Differential Coordinates

Original Rotated Diff-Coords Reconstructed Mesh
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Differential Coordinates

 Which differential coordinate 0;?

— Gradients
— Laplacians

* How to get local transformations T;(0:)?
— Smooth propagation
— Implicit optimization
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Gradient-Based Editing

* Manipulate gradient of a function (e.g. a surface)
g=Vf  g— T(g)

* Find function f* whose gradient is (close to) g’=T(g)
i argmin/ IVE — T(g)|* dudv
f Q2

 Variational calculus — Euler-Lagrange PDE

Af" = div T (g)
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Gradient-Based Editing

» Consider piecewise linear coordinate function

p(u,v) =

* |ts gradient is




Gradient-Based Editing

» Consider piecewise linear coordinate function
p(u,v) = » p; - di(u,v)
* |ts gradient is -
Vp(u,v) =) p;- Véi(u,v)

* |t Is constant per triangle
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Gradient-Based Editing

* Gradient of coordinate function p

g1 Pip
. — G .
—~— -

o (3FxV) pg

* Manipulate per-face gradients

g; — T;(g;)
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Gradient-Based Editing

* Reconstruct mesh from new gradients
— Overdetermined (3F x V) system

— Weighted least squares system

= | inear Poisson system Ap’ = divT(g)
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Laplacian-Based Editing

* Manipulate Laplacians field of a surface
l=A(p) , 1= T(l)

* Find surface whose Laplacian is (close to) 0’=T (1)

p = argmin/ |Ap — T(1)|* dudv
P Q

 Variational calculus yields Euler-Lagrange PDE

A*p’ = AT(1)

soft constraints
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Differential Coordinates

 \Which differential coordinate o; ?

— Gradients
— Laplacians

 How to get local transformations T;(0;) ?
— Smooth propagation
— Implicit optimization
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Smooth Propagation

1.Compute handle’s deformation gradient
2.Extract rotation and scale/shear components

3. Propagate damped rotations over ROI
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Deformation Gradient

* Handle has been transformed affinely
T(x) =Ax+t

» Deformation gradient is
VT(x) =A

 Extract rotation R and scale/shear S

A=UxV! = R=UV! s=vxv’

SVD
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Smooth Propagation

» Construct smooth scalar field [0,1]
e s(x)=1: Full deformation (handle)
¢ s(x)=0: No deformation (fixed part)
« s(x)&(0,1): Damp handle transformation (in between)
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Limitations

e Differential coordinates work well for rotations
— Represented by deformation gradient

* Translations don’'t change deformation gradient
— Translations don’t change differential coordinates
— “Translation insensitivity”
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Implicit Optimization

* Optimize for positions p;’ & transformations T;

A?[p| = |ATi(L) | <> Ti(pi—pj) = P, —p)

 Linearize rotation/scale — one linear system

S —ﬂg I3 T2
Rx ~ xFj(e=xX)r | #5 — | —r1 | X
—ro9 \H s  $1 1
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Laplacian Surface Editing

Enter filname: |feline piy2 Reioad

- info +|
C Exportfiles +
~_Editing —|
- RO —|

-Edit params

Eree ring radnw'ﬂ.s
Fized rnng raa’ius'ﬂ.nﬁ
Handle ra(sius|0.03

ROl seiechofdvpe——;
¢ ELclideat] radiiie
¢ aeodesic radils

[~ Edit Made
v Render anchors

© System data —|
C Seftings  +]

Stare resuit

Saye 1o |uV

M atrix size:| 0 ]

C Geometry sources snd weuslization + |

Blue Light Goiden Light White Light  Red Lignt

©_Rengering mades + |
L Lights + |
O Windows  + |

52




Connection to Shells?

* Neglect local transformations T; for a moment...

-

\_

.
e Basic formulations equivalent!

e Differ in detail preservation
- Rotation of Laplacians
- Multi-scale decomposition

)

|

/HdUUHQ"‘QHduvHQ"‘Hdvv||2 — min «— A?d =0
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Linear Surface-Based Deformation

-

\_

 Shell-Based Deformation
 Multiresolution Deformation

o Differential Coordinates
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Next Time

Non-Linear

Surface Deformations

Taye B
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